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Abstract. We systematically investigate slowly moving matter-wave gap soliton propagation in weak ran-
dom optical lattices. With the weak randomness, an effective-particle theory is constructed to show that the
motion of a gap soliton is similar to a particle moving in random potentials. Based on the effective-particle
theory, the effects of the randomness on gap solitons are obtained and the trajectories of gap solitons are
well predicted. Moreover, the general laws that describe the movement depending on the weak randomness
are obtained. We find that with an increase of the random strength, the ensemble-average velocity reduces
slowly and the reflection probability becomes larger. The theoretical results based on the effective-particle
theory are confirmed by the numerical simulations based on the Gross-Pitaevskii equation.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations – 42.65.Tg Optical solitons; nonlinear guided waves – 05.45.Yv Solitons

1 Introduction

Bose-Einstein condensates (BECs) in periodic potentials
are presently attracting considerable theoretical and ex-
perimental interests [1–6] due to the possibility to ex-
plore a fascinating wealth of physical phenomena ranging
from Bloch oscillations [3], Landau-Zener tunnelling [4] to
lensing effect [5]. In the mean-field approximation, these
systems can be treated as nonlinear periodic systems, in
which the periodic potentials are from the interference of
laser beams and the nonlinearity comes from the inter-
atomic interactions. In such nonlinear periodic systems,
a very important excitation is the formation of gap soli-
tons (GSs) [6]. The term of “gap soliton” was first pro-
posed by Chen and Mills when they studied the light
propagation in periodic Kerr materials [7]. They showed
that the nonlinearity can lead to an optical pulse local-
ization when the optical frequency lies in the gap. These
localized wave packets are called GSs. After that, GSs
have intensively been studied in optical systems and BEC
systems [6,9–18]. Many theoretical methods, such as the
coupled-mode method [10–12,15] and the multi-scale ex-
pansion method [13,14] are employed to study the evo-
lution of GSs. All theoretical studies reveal that GSs are
solitary waves which can propagate inside the nonlinear
periodic systems without deformation. Recently, a direct
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experimental observation of matter wave GS in an 87Rb
BEC, containing about 250 atoms, has been reported [6].

The propagation of GSs in non-perfect lattices is an-
other interesting topic. In optical systems, GS propagation
in nonuniform Bragg lattices in which the lattice constants
change continuously had been studied by Sterke et al. [8].
In their studies, the slow continuous change of lattice con-
stants is treated as perturbations and the GS motion can
be described by the effective particle picture (EPP). In
the EPP, GSs can be treated as moving particles with ef-
fective forces acting on it. They also studied the effects of
defects on the motion of GSs. But, so far, GS propagation
in periodic potentials with weak randomness has not been
studied.

In this paper, we investigate the propagation of slowly
moving matter wave GSs in periodic potentials with weak
randomness. Physically, the weak randomness could be
caused by the fluctuation of optical lattices (generated by
the laser beams). We focus on the BECs in shallow op-
tical lattices. In this case, the matter wave GSs can be
described by the coupled-mode theory [12,15]. Based on
the previous studies [8,19–21], we introduce the EPP into
this nonlinear random system. In this way, we find that
the GS is acted upon by an effective force, and we pro-
ceed to give a detailed interpretation of the force. From
this force, the effective potentials are as well-defined as to
predict the GS trajectories. Moreover, from the EPP, the
general laws of the GS movement depending on the weak
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randomness are obtained, such as, although the change
of the local velocity can be large with the increase of the
random strength, the ensemble-average velocity reduces
slowly, and the reduction is proportional to the variance
of the randomness. In addition, the reflection probabil-
ity becomes larger with the random strength. To confirm
the theoretical studies based on the EPP, the GS motion
is also simulated by the numerical finite-difference time-
domain (FDTD) methods based on the GPEs [22]. After
comparing with each other, we find that the theoretical
results obtained from the EPP agree very well with the
results from the direct numerical simulations.

The paper is constructed as follows: in Section 2, we
introduce the setup of the system in detail. In Section 3,
the EPP based on the coupled-mode theory is constructed,
and the GS trajectories are obtained. In Section 4, we sim-
ulate the motion of GS by the numerical FDTD methods
to confirm the validity of the EPP, and we get the gen-
eral laws that describe the GS movement depending on
the randomness. Finally, in Section 6, we summarize our
results.

2 The setup of our model

Here we consider a BEC immersed in an optical lattice and
a highly elongated harmonic trap. At low enough temper-
atures, the effect of the thermal Bose gas components can
be neglected and the many-particles system of trapped
atoms can be described by a macro wave function Ψ(r, t).
In the mean field approximation, the macro wave function
obeys the three-dimensional (3D) GPE [23,24]
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∂Ψ(r, t)

∂t
=

[
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2∇2
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+ Vext(r) + g|Ψ(r, t)|2

]
Ψ(r, t), (1)

where � is Plank’s constant, m is the atomic mass, g =
4π�

2as/m is the nonlinear coefficient which accounts the
mean field produced by other bosons, and as is the s-wave
scattering length. In equation (1), the external potential
Vext(r) which describes both the trap potential and the
potential arising from the optical induced interference pat-
tern, is given by:
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)
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Here L is the lattice period, El(xi) is the depth of the
optical potential at ith cell, and ωx and ω⊥ denote the
radial and longitudinal frequencies of the anisotropic trap
(ωx � ω⊥), respectively.

In the 3D GPE (1), the potential can be decomposed
as Vext(r) = Vx(x) + V⊥(y, z) and the macro wave func-
tion can be expressed as Ψ = Ψ⊥(y, z)Ψx(x). Because the
BEC is strongly confined in the y-z plane, the radial part
of the macroscopic wave function Ψ⊥(y, z) approximately
satisfies
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∇2

⊥Ψ⊥ +
1
2
ω2
⊥ρ2Ψ⊥ = E⊥Ψ⊥. (3)

In equation (3), the first eigenfunction (zero-node) with
the eigenvalue E⊥ = �ω⊥ is

Ψ⊥(y, z) =
√

mω⊥
π�

exp
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(y2 + z2)

]
. (4)

By integrating in the y-z plane, applying the transforma-
tion Ψx → Ψxe−iω⊥t, and assuming the frequency of the
trap (ωx) is much smaller than the lattice frequency 2π/L,
we can obtain the one-dimensional GPE
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+ El sin (
2πx

L
)Ψx(x, t)

+2as�ω⊥|Ψx(x, t)|2Ψx(x, t).(5)

In this system, the weak spatial randomness of the optical
lattice is included, this means the optical potential depths
in different cells are different. And the potential depth of
ith cell (i.e., El(xi)) can be written as

El(xi) = E0(1 + Wγi), (6)

where E0 is the average potential depth, W is the strength
of weak randomness, and γi is the random number to char-
acterize the randomness. In this system, the random num-
bers γi are set to satisfy the Gaussian distribution

ρ(γ) = Cγe−γ2/σ2
γ , (7)

where σγ = 1 is the root mean square of Gaussian distri-
bution, and Cγ = 1/

√
π is the normalization coefficient.

After introducing the dimensionless variables t′ = t/t0,
x′ = x/x0 + π/2, Ψx = u/L

1/2
1 , and Vl = El/Er and

choosing x0 = L/2π, t0 = mx2
0/�, L1 = 2ω⊥|as|mx2

0/�

and Er = �
2/mx2

0, equation (5) can be reduced to the
following normalized one-dimensional GPE [26]

i
∂u

∂t
= −1

2
∂2u

∂x2
+ Vl(xi) cos (x)u + σ|u|2u, (8)

where σ = sgn(as). Because the depth of optical lattice is
very shallow, the condition E0/Er = V 0

l � 1 is satisfied.
To study the motion of GSs in the weak random opti-

cal lattice, the setup of the system is shown in Figure 1.
In region I, the optical lattice is perfectly periodic (i.e.
Vl(i) = V0), and a moving GS with velocity v0 is gener-
ated as the incidence to region II. In region II, the weak
randomness of the optical potential is introduced in (i.e.
Vl(i) = V0(1 + Wγi)), and the propagation of GSs is the-
oretically and numerically studied. The theoretical EPP
description for the moving GS in the weak randomness
system will be constructed. To confirm the results from
the EPP, the GS motions are also numerically simulated
by the FDTD method based on equation (8). Moreover,
the general conclusions regrading the GS motion, i.e. the
ensemble-average velocity and the reflection, are obtained.
Because of the limitation of the computer resources in the
numerical simulation, the length of the system is quite
limited (about 25 times of the soliton width), so that we
need about 20 configurations of the system to obtain the
ensemble-average value.
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Fig. 1. Schematics shows the setup of our model. In region
I, the optical lattice is perfect, while in region II, a weak ran-
domness of the optical lattice is introduced. A moving GS with
initial velocity v0 is generated in region I and then incident to
the region II.

3 The effective particle picture

In this section, we will construct the EPP for matter wave
GSs in weak random systems based on the coupled-mode
theory and derive the expression of the effective forces and
the effective potentials.

Coupled mode theory is widely used to describe the
matter waves in optical lattice (such as the BEC) very well
when the optical potential is very shallow [15]. Here we
give a brief description of the coupled-mode theory. First,
we suppose there is no linear and the nonlinear potentials
in equation (8), then matter waves with its chemical po-
tential µ can be expressed as u(z, t) = e−iµt[uf(x, t)eikx +
ub(x, t)e−ikx] where k =

√
2µ is the wave vector and the

constant uf and ub label the amplitude of the fields prop-
agation forwards and backwards. The basic idea of the
coupled-mode description is if the modulations are very
small the solution has the same form only uf and ub vary
slowly with z and t:

∣∣∣∣∂uf,b

∂t

∣∣∣∣ � µ |uf,b| ,
∣∣∣∣∂uf,b

∂z

∣∣∣∣ � k |uf,b| . (9)

For matter waves with the chemical potential (µ) near the
Bragg condition at µB = k2

B/2 = 0.125 [25], the solution
of equation (8) can be expressed as:

u(z, t) = e−iµt[uf(x, t)eikBx + ub(x, t)e−ikBx]. (10)

Now inserting equation (10) into equation (8) and using
the slowly varying conditions (9), we find that
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]
e−ikBx = 0.

(11)

In equation (11), the remaining problematic terms are the
terms involving e±2kBx. Sterke et al. had shown that such
components of higher spatial frequency would only cou-
ple back to uf,b involving terms of V 2

l [9]. Since Vl is
very small, such effects can be neglected. Therefore we can
obtain the nonlinear coupled-mode equations (NLCMEs)
from equation (11):

i
∂uf

∂x
+

i

kB

∂uf

∂t
+∆kuf +κ(x)ub+α(|uf |2+2|ub|2)uf = 0,

(12a)

−i
∂ub

∂x
+

i

kB

∂ub

∂t
+∆kub+κ(x)uf +α(2|uf |2+|ub|2)ub = 0,

(12b)

in which ∆k = (2µ − k2
B)/2kB is the value to represent

the difference between the energy µ and the gap center
energy level, κ(x) = Vl(x)/2kB = κ0(1 + Wγ) is the local
coupling coefficient from which the random potential is
introduced into the coupled-mode theory, and α = −σ/kB

is the nonlinear coefficient.
In equation (8), if we suppose the perfect periodic

potentials without randomness and nonlinearity, the NL-
CMEs reduce to two coupled linear equations. And the
band gap structure can be obtained from the linear
coupled-mode equations. In this case, the envelope func-
tions have the form uf,b = vf,be

iQx, and the constants vf,b

satisfy the following equations:[
∆k − Q κ0

κ0 ∆k + Q

] [
vf

vb

]
= 0. (13)

Then the dispersion relation can be expressed as:

µ =
k2

B

2
± kB

√
κ2

0 + Q2. (14)

From equation (14) we can see that the energy gap width
is equal to 2kBκ0. Because 2kBκ0 = V 0

l � 1, the energy
gap of the periodic potential is very narrow.

In region I, the optical lattice is perfect (κ(x) = κ0 =
V0/2kB) and the GS solution can be obtained. For the
GS in a perfect lattice, the amplitude of the forward and
backward waves in equation (12) are [10,11]:

uf,b(x, t) = Af,b(x, t)eiφf,b , (15)
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Fig. 2. Moving GS solution in a perfectly periodic optical
lattice with the following parameters: chemical potential µ =
0.127, optical potential V0 = 0.02, nonlinear coefficient σ = −1,
and the initial velocity β0 = 0.1325. This figure shows that
the spatial distribution of GS (u(x)) is laterally symmetric in
space.

where

Af =

(
κ0

|α|
2(1 + β)

√
1 − β2

3 − β2

cos2 θ

sin(θ) + cosh [2y]

)1/2
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Here β = v/kB is the GS normalized velocity and v is the
velocity which is a free parameter of the strict GS solution,
θ = arcsin ∆k

κ0

√
1−β2

, and y = κ0 cos θ√
1−β2

(x − x0 − vt) are the

GS moving coordinates and x0 is the central position of
the GS. The spatial distribution of a strict moving GS
solution is shown in Figure 2, and we can see that it is
lateral symmetric in space.

In region II, where the randomness is introduced, the
strict GS solution does not exist. However, because the
randomness is very weak based on the perturbation theory
we can construct the EPP. In the EPP, the matter wave
field can be assumed to keep as a GS during the motion.
This is true as long as the radiative emission of mat-
ter wave GS can be neglected. In this assumption, the
strict GS solutions are still available in region II. In ad-
dition, from the strict GS solutions (Eqs. (15) and (16)),

we can see that the time-dependent parameters β and θ
are able to fully characterize the GS. Therefore we are
interested in the time evolution of β and θ. Our aim
is to obtain the evolution equations of β and θ. Simi-
lar to the previous research in references [8,27], the EPP
can be constructed by defining a set of moments which
can completely characterize the GS. The moments, which
are analogous to those used in references [8,27] are given
below:
the total particle number Q

Q ≡
∫ +∞

−∞
(|uf |2 + |ub|2)dx =

4
α

1 − β2

3 − β2

(π

2
− θ

)
, (17a)

the effective position xs

xs ≡ 1
Q

∫ +∞

−∞
x(|uf |2 + |ub|2)dx = x0 + vt, (17b)

the effective velocity vs

vs ≡ 1
Q

∫ +∞

−∞
(|uf |2 − |ub|2)dx = v, (17c)

and the effective momentum P

P ≡
∫ +∞

−∞
Im[u∗

f∂xuf + u∗
b∂xub]dx

=
κ0

α

4β
√

1 − β2

3 − β2
cos θ

+
κ0

α

16β
√

1 − β2

(3 − β2)2
[
cos θ − sin θ

(π

2
− θ

)]
.(17d)

In these equations, “≡” represents the definition of these
moments and “=” denotes the moments are which evalu-
ated for the strict GS solutions. From equation (17), we
can see that both the “particle number” Q and the mo-
mentum P are conserved quantities for a GS in perfect
lattices.

Using the definition of the moments in equation (17)
and the NLCMEs (12), time derivatives of the particle
number (Q), effective momentum (P ) and effective posi-
tion (xs) can be easily calculated:

dQ

dt
= 0, (18a)

F =
dP

dt
= κ0W

∫ +∞

−∞

[
Re(2ufu∗

b)
∆γ

∆x

]
dx

= −κ0W

∫ +∞

−∞

∂ [Re(2ufu∗
b)]

∂x
γdx, (18b)

dxs

dt
=

1
Q

∫ +∞

−∞
(|uf |2 − |ub|2)dx = vs. (18c)

Here, equation (18a) represents that the particle number
is still conserved, while equation (18b) represents that the
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momentum conservation is broken by the “force”. Equa-
tion (18c) confirms that the definition of the effective po-
sition and the effective velocity given by equations (17b)
and (17c) are mutually consistent. To solve the force F in
equation (18b), uf,b must be known at all times, which in-
clude the full NLCMEs. Instead, as mentioned above, we
assume that the moving GS is the same as a strict GS so-
lution except for the time-dependent parameters. Further-
more, from the conservation of the particle number (18a),
θ(t) can be expressed in terms of the normalized velocity
β(t) and the initial particle number Q0

θ(t) =
π

2
− α

4
3 − β2

1 − β2
Q0. (19)

Since we only focus on the slowly moving case in this pa-
per, the β2-order terms can be neglected. The parameter θ
in equation (19) can then be thought of time-independent
(velocity-independent), and the momentum P in equa-
tion (17d) can then be approximated by:

P =
κ0

α

[
4
3

cos θ +
16
9

(
cos θ

− sin θ
(π

2
− θ

) )]
β ≡ msβ. (20)

Note that if θ enters equation (20) as a velocity-
independent parameter, the parameter ms is velocity-
independent too. Thus ms in equation (20) can be treated
as the mass, which is an intrinsic parameter of the GS.
Using the above approximation, the EPP can be simpli-
fied as:

dxs

dt
= βkB , (21a)

F =
dP

dt
, (21b)

P = msβ. (21c)

From equation (21b), we can obtain the motion details of
a GS in a random system. In equation (21b), the “force”
on a GS can be solved by evaluating the integrals in equa-
tion (18b). In the low-velocity limit, the change of the
function Re(ufu∗

b) is of β2-order too, so that the force F
only depends on the position of the GS. In other words,
the force on the GS is a conservative one, and we can
define the effective potential later.

To obtain the GS motion, the force in equation (21b)
should be solved first. After introducing the “force-
responding” function g(x − xs) = −∂x(2AfAb cos(φf −
φb)) [28], equation (18b) can be simplified as

F (xs) = κ0W

∫ +∞

−∞
g(x)γ(x)dx. (22)

Obviously, the “force-responding” function g(x − xs) is
independent of the randomness. The spatial distribution of
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Fig. 3. The spatial distribution of the “force-responding” func-
tion g(x − xs). The parameters of the GS is same as the pa-
rameters in Figure 2. We can see that the function g(x − xs)
is odd (g(xs + x) = −g(xs − x)) and when (x − xs) → ±∞,
g(x) → 0.

the function g(x−xs) of a case is plotted in Figure 3. From
this figure, we can see that the function is odd: g(xs+x) =
−g(xs − x) (the odd property can be obviously derived
from the strict GS solution too), and when x − xs →
±∞, g(x − xs) → 0. To simplify the calculation, we can
define a cutoff length xcut, and suppose g(x − xs) ∼ 0
when |x−xs| > xcut. After that, the effective force can be
approximated as

F (xs) = κ0W

∫ xs+xcut

xs

g(x − xs)γ(x)dx

+ κ0W

∫ xs

xs−xcut

g(x − xs)γ(x)dx = Ff (xs) + Fb(xs).

(23)

Because g(x − xs) is odd, the force effects of the ran-
domness on the GS front part and the back part are
different. Such as when γ(x) > 0 (a positive random
fluctuation), if the position x is at the GS front part
(x > xs), its contribution to the total force is negative
(backward force), but if the position x is at the back
part (x < xs), its contribution is positive (forward force).
Thus the force in equation (23) can be separated into
two parts: Ff (xs) = κ0W

∫ xs+xcut

xs
g(x − xs)γ(x)dx is the

“front-part” which is an integral over all contributions of
the local fluctuation in the region of the GS front part,
Fb(xs) = κ0W

∫ xs

xs−xcut
g(x−xs)γ(x)dx is the “back-part”,

which is the same of the back-part region. Equation (23)
gives a more detailed interpretation of the origin of the
force from the oddness property of the force-responding
function.
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Because the force is a conservative one, an effective
potential on a GS can be defined:

U(xs) = −
∫ xs

x0

F (x′)dx′ (24)

where x0 and xs are the GS initial position and current
position, respectively. The force in equation (24) can be
discretized as

F (x′) =
j=ncut∑

j=−ncut

λjγj (25)

where the coefficients λj = κ0W
∫ jL

(j−1)L
g(x− x′)dx. Sub-

stituting equation (25) into equation (24), the effective
potential at xs can be written as

U(xs) = −κ0LW [
ncut∑
j=0

(γns−j + γns+j)
∫ ncutL

jL

dxg(xs + x)

−
ncut∑
j=0

(γn0−j + γn0+j)
∫ ncutL

jL

dxg(x0 + x)], (26)

where ns = xs/L, ncut = xcut/L, and n0 = x0/L. In equa-
tion (26), the effective potential only depends on the ran-
dom configurations near the GS initial position (x0) and
its current position (xs). This is a general property for
conservative potentials, whose value is determined by lo-
cal conditions and independent of the dynamical process.
It will also be shown that the integral in equation (24) over
the evolution process should be cancelled with each other.
The cancellation can be easily explained by the oddness
property of the force-responding function g(x). For ex-
ample, we suppose at x1 the γ(x = x1) > 0, when the
GS front-part passes the x1, the contribution of this point
to the integral of equation (24) is negative, but when the
back-part passes through x1, the contribution of this point
to the integral is positive, which can exactly cancel the
contribution at the front-part. To calculate the potential
more concisely, we introduce the weight functions:

R(γns±j) = −
∫ ncutL

jL

dxg(xs + x). (27)

Then, the effective potential can be calculated by the dis-
crete summation:

U(xs) = κ0LW

ncut∑
j=−ncut

R(γns+j)γns+j . (28)

The physical meaning of the weight function can be ex-
plained as the contribution of those points, whose position
is in the range |x − xs| < xcut to the effective potential.
Because the GS has not passed through those points (or
those points are still in GS range), their contribution to
the effective potential is not zero. Similarly, to g(x), the
weight function R only depends on the GS field distribu-
tion and can be thought of as an integrated-contribution
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Fig. 4. The weight function R(γns+j) is normalized by R(γns)
via the position. The parameters of the GS is the same as those
used in Figure 2 and the value of R(γns) = 0.0158. We can see
that the weight function is even.

factor of the local fluctuation at x, when the GS is passing
this point. The spatial distribution of the weight function
R(γns+j) normalized by R(γns) of one case is plotted in
Figure 4. From this figure, we can see that the weight
function is even (the even property can also be obtained
from Eq. (27)).

After the effective potential is obtained, the equation
of the mechanics-energy conservation based on the EPP
can be written as:

ms

2
β2(x) + U(x) =

ms

2
β2

0 + U(x0). (29)

Here β0 is the initial normalized velocity and msβ2(x)
2 is

the EPP “kinetic energy” of the GS at position x. From
equations (28) and (29), we can see that if the random
configurations are known, the GS trajectories can be ob-
tained. We can set the effective potential of perfect lattice
is zero (U(x0) = 0), then from the conservation of equa-
tion (29), there exist a critical potential value:

Uc =
msβ

2
0

2
. (30)

If the effective potential is smaller than the critical po-
tential, GSs can pass forwards. But if the local effective
potential is larger than the critical potential (U(x) > Uc),
GSs will be reflected.

4 GS propagation in weak random optical
lattices

In the last section, the EPP is formally constructed. Based
on the EPP, the GS trajectories can be obtained. The GS
trajectories can also be obtained by the direct numerical
FDTD simulations based on the GPE. In this section, to
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Fig. 5. (Color online) A GS passes forward in a weak random optical lattice. The time step is ∆t = 600. The parameters
of the GS are: chemical potential µ = 0.127, optical potential V0 = 0.02, nonlinear coefficient c = −1, the initial normalized-
velocity β0 = 0.1325, and the mass of the GS is ms = 2.561. The random strength of the optical lattice W = 0.035. Figure (a)
shows the evolution of GS calculated by the numerical FDTD simulations based on equation (8). Figure (b) shows the effective
potential versus the position. During the propagation, the effective potentials are always smaller than the critical potential
Uc = 0.000224. Figure (c) plots the trajectories in the (β − x) plane. The trajectory solved from the EPP (black line) coincides
with the trajectory obtained by the numerical FDTD simulations (red line).

confirm the validity of the EPP, the results of the numer-
ical FDTD method based on the GPE (8) are compared
with the EPP results. Eventually, the general laws of the
GS movement in weak random optical lattices are dis-
cussed.

4.1 Numerical methods and the validity of the EPP

The numerical FDTD method of solving GPE (8) are
briefly introduced at here. In the numerical simulation,
the GPE (8) with the perfectly matched layer [22] is dis-
cretized via the Crank-Nicholson algorithm and solved by
the FDTD methods. In the calculations 100 grid points
per one lattice cell have been used, which results in the
grid spacing being much smaller than the length of the
GS. The computational domain extends over 500 lattice
sites (about 25 times of the GS width). To keep numerical
stability, a time grid δt ∼ 10−3 has been selected. In the
following, the GS propagation in two random configura-
tions, one corresponding to the passing forward case and
the other corresponding to the reflected case, are simu-
lated.

Corresponding to the passing forward case, time evolu-
tion of the GS (i.e, the GS position versus time) is plotted
in Figure 5a which shows that the GS passes forward. This
is in accordance with the potentials displayed in Figure 5b
which shows that the effective potential is always smaller
than the critical potential Uc. Moreover, to test the valid-
ity of EPP, the trajectories calculated by the EPP (black)
with the trajectory obtained from the numerical FDTD
simulations (red) are shown in Figure 5c. We find that
they coincide with each other.

Similar to the passing forward case, for the reflected
case, the GS evolution is shown in Figure 6a. From this

figure, we can see that the GS is reflected at position xR ∼
140L. This agrees with the results shown in Figure 6b: the
effective potentials in region III are larger than the critical
potential Uc. Finally, the GS trajectories obtained by two
methods are plotted in Figure 6c. From this figure, we can
see that they agree with each other very well.

From the two examples above, we can see that the
theoretical results calculated using the EPP agree with
the results from the numerical FDTD simulation very well.
This confirms that the EPP is a valid method to describe
the GS propagation in the periodic potential with weak
randomness.

4.2 General laws of the GS movement depends on
weak randomness

From the above analysis, we can see that the GS trajecto-
ries strongly depend on the local random configurations.
In this subsection, we will obtain the general laws of the
GS motion depending on the weak randomness.

To be consistent with the discussion in Section 3, the
normalized ensemble-average velocity β (in the following
this will also be called ensemble-average velocity) is used
to characterize the GS movement. The ensemble-average
velocity (β) is defined as

β =
1

kB
lim

N→∞
NL∑
i ∆ti

. (31)

In equation (31) ∆ti = L/vi is the time in which the GS
passes through the ith cell, and vi = βikB is the veloc-
ity with which the GS passes through the ith cell. From
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Fig. 6. (Color online) A GS is reflected in a weakly fluctuating optical lattice. The time step ∆t and the parameter of GS
are same to Figure 5, and the random strength is W = 0.045. Figure (a) shows time evolution of a GS in the optical lattice
calculated by the numerical FDTD simulation. Figure (b) shows the effective potentials versus the position. We can see that
in region III, the effective potentials are larger the critical value Uc = 0.000224. Figure (c) plots the trajectories in the (β − x)
plane. The trajectory obtained by the EPP (black line) and the FDTD simulations (red line) are agreeable with each other. At
position xR, where the effective potential is larger than the critical potential, the GS is reflected.

equation (29), we find that the time ∆ti in equation (31) is

∆ti =
L

βikB
=

L

kB

1√
β2

0 − 2
ms

Ui

. (32)

From equation (26), we find that the effective potential
Ui in equation (32) can be written as Ui = CuWγi

u,
in which Cu = κ0g0L is the coefficient and γi

u =∑j=ncut

j=−ncut
ηjγni+j is the random number which charac-

terizes the effective potential. Here, g0 =
∑

j R(γni+j) =

−2
∑

j [
∫ ncutL

jL
dxg(xi + x)] and ηj = R(γni+j)/g0. Substi-

tuting equation (32) into equation (31) and transform-
ing the discrete equation (31) into integral forms, the
ensemble-average velocity can be written as:

β =
1∫

dγu
1√

β2
0− 2CuW γu

ms

ρ(γu)
, (33)

where

ρ(γu) = Cγue−γ2
u/σ2

γu , (34)

is the distribution of the random number γu [29]. In equa-
tion (34) σγu = 1/[

√∑
i η2

i ] is the root mean square of
the Gaussian distribution, and Cγu = 1/[σγu

√
π] is the

normalization coefficient.
Substitute equation (34) into equation (33), the

ensemble-average velocity can be solved [30]. In addi-
tion, the ensemble-average velocity can also be obtained
by the numerical FDTD simulations. In the numerical
simulations, GSs propagate through about 5000 lattice
sites which include about 20 configurations. The ensemble-
average velocity (β) versus the random strength (W ) are
plotted in Figure 7. From this figure, we can see that the

0 0.01 0.02 0.03 0.04 0.05 0.06
0.12

0.125

0.13

0.135

 random strength (W)

 e
ns

em
bl

e−
av

er
ag

e 
ve

lo
ci

ty

Fig. 7. The ensemble-average velocity of the GS β versus the
random strength W . The initial parameters of the GS are same
to the parameters in Figure 5. In this case, the coefficients
in equation (33) are obtained: Cu = 2.793, σγu = 0.297 and
Cγu = 1.899. The ensemble-average velocity β depending on
the random strength calculated by the EPP (solid) and the
numerical simulation (dash-dot line) agree with each other very
well. From this figure, we can see that with the increase of the
random strength, the ensemble-average velocity reduces slowly.

ensemble-average velocity calculated by the EPP (solid
line) coincides with the one obtained from the numerical
FDTD simulation (dot-dash line). This also proves that
the EPP can describe the GS movement in a weak ran-
dom system very well. Furthermore, from this figure we
can see that with an increase of the random strength, the
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ensemble-average velocity reduces slowly and the β − W
relation is parabolic.

The small reduction of the ensemble-average veloc-
ity can be explained qualitatively from equations (31)
and (32). Because the random strength is very small in our
model, the probability that the effective potential is larger
than the critical potential is very small. In the following,
we only focus on the case that the effective potential is
smaller than the critical potential. In this approximation,
the local velocity in equation (29) can be expanded as

βi = β0

[
1 − Ui

msβ2
0

− 1
2

(
Ui

msβ2
0

)2

− · · ·
]

. (35)

Then the ensemble-average velocity in equation (33) can
then be approximated with:

β =
β0

1 + CuW
msβ2

0
γu + 3

2 ( CuW
msβ2

0
)2(γu)2

. (36)

In equation (36), the average value γu is zero, and the
value γ2

u is a positive constant. The ensemble-average
velocity can then be written as:

β = β0

[
1 − 3

2

(
Cu

msβ2
0

)2

W 2(γu)2
]

. (37)

In equation (35), the change of the local velocity is mainly
from the first order term (i.e, β0Ui/(msβ

2
0)) which can be

close to β0, while the reduction of the ensemble-average ve-
locity in equation (37) is proportional to the second-order
term, which is very small in this system. This means that
although the change of the local velocity can be large, the
reduction of the ensemble-average velocity is very small.
Also from equation (37), we can see that the β − W re-
lation is parabolic. Moreover, from equation (37), the re-
duction of the ensemble-average velocity is proportional
to the value Γ = W 2γ2

u. Using equation (34), the value
(Γ ) can be written as Γ = (W 2γ2)/σ2

γu
, in which W 2γ2

is the variance of the weak randomness of optical lattices.
Therefore, the reduction is proportional to the variance of
the weak randomness.

Finally, the reflection probability depending on the
random strength is solved. The condition of the reflected
case can be solved from equation (30): when CuWγu >
msβ

2
0/2, the GS will be reflected. Then, the critical value

of the random number is γc
u = msβ

2
0/(2CuW ), and the

reflection probability is

Pr =
∫ +∞

γc
u

ρ(γu)dγu. (38)

The reflection probability Pr versus the random strength
W is plotted in Figure 8. From this figure, we can see
that with an increase of the random strength, the re-
flection probability becomes larger. This is because with
an increase of the random strength, the probability that
the effective potential is larger than the critical potential
becomes larger.
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Fig. 8. The reflected probability Pr versus the random
strength W . The parameters of the GS are same with the pa-
rameters in Figure 5. This figure shows that with the increase of
the random strength W , the reflected probability Pr becomes
larger.

5 Summary

In conclusion, slowly moving matter-wave GSs propaga-
tion in weak random optical lattices has been investigated
in this paper. Introducing weak randomness, an EPP is
constructed to describe the GS movement. From the EPP,
we find that the GS behaves like a particle with conserva-
tive forces acting on it. Based on the conservative forces,
the effective potentials are sufficiently well defined to ob-
tain the GS trajectories. The detailed interpretations of
the effective forces are found and the expressions for the
effective potentials are obtained. Moreover, the general
laws of the GS movement depending on the weak ran-
domness are obtained. We find that although with the
increase of random strength, the change of the local ve-
locity can be large the reduction of the ensemble-average
velocity is very small and proportional to the variance of
the weak randomness. In addition, the reflection probabil-
ity becomes larger along with the random strength. The
theoretical results obtained by the EPP are confirmed by
the numerical FDTD simulations based on the GPE.
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